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SUMMARY 

An important step towards the understanding of many industrial coating processes is a solution of the drag- 
out problem, which is to determine the thickness of the film of liquid which clings to a plate when it is 
drawn steadily out of a bath of the liquid. An approximate solution, valid for small capillary numbers, was 
given by Landau and Levich, and considerable effort has been exerted to extend or ref'me this work. In this 
paper we show that the Landau-Levich result is an asymptotic solution valid as the capillary number tends to 
zero, a fact not properly appreciated hitherto, and show how correction terms may be obtained by the 
method of matched expansions. We also show how the results may be applied to the coating of a horizontal 
roller. 

1. Introduction 

Suppose an infinite flat plate is withdrawn vertically, with constant speed U, from a bath of  

liquid of  viscosity tt which has a horizontal free surface, and a steady state is established. What 

is the thickness of  the film of  liquid adhering to the plate at a large height above the free sur- 

face? This is the drag-out problem, and it is fundamental to the understanding of  many in- 

dustrial coating processes. For example, the coating of  a horizontal roller, partially immersed in 

the liquid, which has been discussed by Middleman [1] and Tharmalingam and Wilkinson 

[2, 3] ,  is only slightly more complicated. It will be shown that, within the parameter regime 

considered in this paper, the roller-coating problem reduces, in all but trivial respects, to the 

drag-out problem for a plate inclined at an appropriate angle o~ to the vertical. The inclined 

plate problem is sketched in Figure 1. 

Consider the fully developed region on a vertical plate. If  we make the obvious force balance 

between gravity and viscosity, we find that the film thickness should be of  order d where 

d = (l~U/pg) 1/u (1) 

However, Landau and Levich [4] showed that when the capillary number Ca = I~U/7 (where 

7 is the surface tension of  the liquid) is small the thickness is actually 

= ~(Ca) 1~6. (2) 
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Figure 1. Plane drag-out at an angle a. 

Here 2~ is a dimensionless constant obtained from the numerical solution of a canonical 
ordinary differential equation describing the shape of the free surface in the overlap region. To 

obtain their result Landau and Levich assumed that the thickness was small in some sense, and 
the necessary condition Ca ,~ 1 emerged a posteriori. Since then various authors have attempted 
to improve the accuracy of the result (2) by retaining some of the previously neglected terms 
and by introducing new small terms. We may cite the work of White and Tallmadge [5], Spiers 

et al. [6] and Tharmalingam and Wilkinson [2] in this connection. All these authors noted thatl 
that, with the retention of the extra terms in the_equations, it becomes impossible to make the 

differential equation for the free surface satisfy appropriate conditions as the meniscus region 
is approached. To get round this various ad hoc alterations to the equations were made and, 

although in some cases the numerical agreement between theory and experiment was improved, 

the approach is basically irrational and does not clear up the difficulty. 
It will be shown in this paper that the root of the problem lies in the ad hoc treatment of 

small terms by previous authors and, more particularly, in the neglect of certain small terms in 
the formula used in the overlap region for the free-surface curvature. If proper account is taken 
of the small terms, it is possible to obtain approximate solutions in the case Ca ,~ 1 by a rational, 
systematic procedure, namely the method of matched expansions. This puts the Landau-Levich 
theory on a firm foundation. Then the next approximation to (2), which involves a correction 
of order (Ca) 1/2 , is calculated. As noted above, it is then a simple matter to obtain the solution 
to the roller-coating problem to the same order. 

2. The overlap region 

The configuration is sketched in Figure 1. The equations of motion, which are those of lubri- 
cation theory, are 
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1 a p  O2u  
0 = g c o s a - - - - - +  v - -  (3) p a~ ay ~'  

1 b p  
0 = - -  g s in  a - -  - -  - -  . ( 4 )  poy 

The boundary conditions are 

u = - - U  on y = 0; (5) 

~u 
- -  = O, P = - - T r  o n  V = h ( 2 ) .  ( 6 )  ay 

Here K is the curvature of the free surface fi = h and is given by 

" (7) 

These equations can be solved in a straightforward manner to give an ordinary differential 
equation for h(2).  We integrate (4) and use (6) to find the pressure, substitute into (3) and 
integrate three times with respect to y. This introduces the flux Q, which we write as 

Q = - u / 7  + 1 pgcos ot/Ta, ( 8 )  

3 /1 

where/7 is the film thickness at infinity up the slope, that is, as ~ ~ - o~. (This is unknown at 
present of course). The equation for h is 

31 P3' ~a ~dt~ +-31 g c o s a  (~a _/Ta)_/~___ Up ( h _ H ) _ 3 g  sin ot~ 3 d-~dh = 0, (9) 

¢ 

and we now consider the choice of dimensionless variables. We begin by scaling h and R on d, 
although this will turn out later to be inappropriate as we see from (2). There is no geometrical 
length scale for 2, so we choose that length which produces a balance between the curvature 
term dK/d~ and the other important terms, namely those in U and g cos a. This length scale, 1, 
say, turns out to be 

l = d l / a D  2/a, (10) 

where D = ( 7 / p g )  1/2 is the length scale appropriate to a static meniscus and will therefore 
enter when we consider the meniscus region later. Note that 

d/D = (Ca) 1'~. (11) 



212 

We introduce a convenient small parameter 8 given by 

6 = (Ca) l m =  (diD) l/a (12) 

and thus obtain the dimensionless form of(9),  

dx (1 + 64h~)a/2j = 3 ( h - - H ) -  cos,v(h a - - H  a) + 82 sin t~hahx . (13) 

A number of small terms have been left out o f  the foregoing derivation, even though they 
are comparable with the small terms we have retained. These include .the normal component 
of viscous stress at the free surface which would appear in (6) and was calculated by Spiers et 

al. [6]. This would produce a term of the order 34 in (13). However, it turns out that they are 
uniformly negligible if ~ < 1, at least to the order to which we shall work, whereas the small 
terms in (13) are not, and to keep the exposition as simple as possible we have displayed only 
those terms which are going to be important somewhere. 

The equation (13) is third order and so four conditions are necessary to fix the solution 
and the unknown parameter H. We have 

h - , ' H  as x ~ - o o  

and by linearising about H and, using the fact that/~ is small (and so is H, as will be shown), it 
can easily be shown that two exponentially growing solutions must be ruled out, giving two 
conditions. Next we note that (13) is invariant under a shift of origin of x, and this can be 

used to fix another constant, multiplying the exponentially decaying solution, equal to (say) 
unity. The solution must also merge somehow into a solution valid in the meniscus region. This 
matching, which yields the fourth condition, is essentially the subject of this paper. Before 

explaining this we shall use (13) to give a brief account of the Landau-Levich solution and the 
subsequent difficulty concerning the small terms which was mentioned above. 

Suppose we put tx = 0, neglect the terms in 5, and also suppose h is small. More precisely, 
we put h = H/~, x = 3-1/3 H~ and suppose H is small. Then we obtain 

~3~,,  = ~ _  I (15) 

with the boundary condition 

h ~ l  as ~ - - ~ .  

Now as ~ ~ + oo we shall have 

d~ 2 ~ a  (a constant) (16) 

and the constant a can be found numerically. The quadratic behaviour o fh  as ~ ~ oo indicates 
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that the meniscus solution must approach the flat plate with zero contact angle, and it is easy 

to show that the (dimensional) curvature of  the meniscus must be 2 u2/1) at the point of con- 

tact. Comparing this with (16) we Fred 

32/aa ( d )  v3 32/3a 
H -  21/2 = 2u---T-(Ca)U~ (17) 

which of course is the result (2). 

Now suppose we consider (13) again but retain what appear to be the next most important 

terms after those kept in (15). We obtain 

~'3~',,, = /7 t _ 1 - - 1 H 2 ( h ' S  1). (18) 

Now it seems that h" cannot tend to infinity at all as ~ ~ oo because no matter how small 
H is the term in H 2 on the right would ultimately dominate h and cause the third derivative 

"' to change sign. 

However it turns out that, when h" takes on values large enough to bring the term in H 2 

in (18) to order one values, all the other small terms in (13) will also enter and a solution 

with acceptable behaviour can be found, and we now consider this in detail. 

3. Solution by matched expansions 

In view of (17) it will be necessary to scale h, H and x by factors of~,  and so we put 

h = 6¢, H = 8J, x = 8~ 

and obtain 

(19) 

¢3 (1 + v*c, D3'2] = 3 ( ¢ - s )  -  'cos ( ¢  _ j 3 )  + (20) 

Substituting the expansions 

¢ = ¢o -I" 62¢1 . . . , J  = J0 -Jr- ~ 2 J  1 . . . (21) 

into (20) we find 

3 m ¢o~o = 3 ( ¢ o - J o )  (22) 
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with 

¢ o  - ~ J o  as ~ - ,  - oo. 

As ~ ~ oo we have the asymptotic form 

~o "" 2Ao~ + Bo + . . .  (23) 

in which the constant Ao has a definite value, given Jo,  but Bo can arrange to take any value 
by a shift o f  the origin of  ~. (Note that (13) is invariant under a shift o f  the origin o f x . )  

At next order we find 

~o3~ 2 , , ,  + 30o~o ~1 = 3 (~1 --  J l )  -- cos ot(~O~ -- Jo 3) (24) 

with 

q~l ~ J 1  as ~ - - ~  

and the asymptotic form, as ~ ~ 0% 

, 1 
~l ~ - - ~ - c o s a ~  ~ + 2A1~ + B l  . . .  (25) 

The constants B0, A 1, B~ will be determined by matching to an 'outer '  solution valid in 
the meniscus region. To obtain the correct scalings for this region we note that ~0 ~ ~2 as 

~ oo and then we find that the small terms in (20) come into balance with the transform- 

ation 

X = ~2~, • = 54~ (26) 

which gives 

d-.~ (1 + ~ r )  3/2 = - - c o s o t +  s i n o t ~ x + O ( ~ 6 ) ,  (27) 

This is just the equation of a hydrostatic meniscus, and the scale for 4, and X is in fact 
D. In order to match correctly to the inner solution this meniscus must meet the fiat plate 
at zero contact angle and we may take the origin of  X at the point o f  contact. In other words, 

(27) must satisfy the conditions 

= 0, CI,x = 0 at X = 0. (28) 
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To complete the solution we need a third condition and this is the requirement that the 

surface become horizontal at infinity: 

~ X cot a --  C1 as X ~ ~ (29) 

where C~ is a constant. 

Now (27) can be integrated twice to give 

~ x x  - X cos a + • sin ot + 6"2, (30) 
(1 + ~)3/2 

( ~ x  cos ot + sin or) 1 
(1 + ~ ) 1 / 2  = (~  sin a - - X c o s a )  2 + C2(~  sin o~ -- X cos a)  + Ca, (31) 

where 6'2, C3 are constants. Applying the conditions (28) we find 

Ca = -- sin a (32) 

and applying (29) to (30) and (3 !)  we find 

6'2 = C1 sin or, (33) 

C2 = (2 --  2 sin a) 1/2 . (34) 

What we need for the matching is the form of  • near X = 0, and this is now easily found 

to be 

1 
¢~'~ (2--2sina)U2X 2 - ~ - c o s a X  3 + . . .  (35) 

Note that we can exploit the free choice o f  origin of  X to place it exactly at a distance 

6'2 above the undisturbed free surface (that is, to all orders in/~) and this means that (35) 

is the complete expansion of  ~ until terms of  order 86 (which were suppressed in (27)) enter. 

This derivation has been given for the case t~ > 0 and the results hold when et = 0 or a < 0, 

although there is an apparent difficulty in the argument. When ot < 0 we must let a carry its 

own sign in (29) and proceed to the limit X - ~ - -  0% so that • ~ + oo as before. When a = 0 

the simplest procedure is to put ct = 0 in (30) and (31) and abandon (29). The condition we 

need is that the solution becomes infinite at a finite value of  X, not as X ~  0% and this is 

equivalent to requiring the slope to be infinite and the curvature to be zero simultaneously. 

The left-hand side o f  (30) vanishes when X = 6"2 (when ct = 0) and putting this into (31) 

with e x  = oo gives 6'2 = 21/2 as required. 

Now matching (23 to (35) gives 

2Ao = (2 --  2 sin o01/2 , Bo = 0 . (36) 
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It is possible to reduce (22) to the universal form (15) by trivial changes of variable, and 
then numerical integration yields 

Jo (a) = Jo (0)/(1 - sin a)  (37) 

where 

Jo(O) = 0.94581 . . . ,  

a result given by previous authors, including Landau and Levich, although not to this accuracy. 
Continuing now with (25) we see that the term -- ½ cos a~2 matches with the cubic term in 

(35), and that AI = 0, and this requirement is sufficient to fix the unknown parameter Jl  
in (24). In this equation a appears explicitly, and also implicitly because Jo depends on or. The 
condition (25) also contains cos ~ but this of course is really the same cos ~, that appears 
in (24). Because Jo (~) is known explicitly from (37) it is possible to reduce the numerical 
work on (24) to a single integration for the case ot = 0. This i~ done by removing a factor 
cos a( l  -- sin a)  -3/2 from ~1 and Jr ,  and we find 

Jl  (Or) = Jx (0) cos a/(1 -- sin ~,)w2, (38) 

where 

J~(0) = - 0 . 1 0 6 8 5 . . .  

The final result for the fdm thickness can be written 

R = (1 -- sin ~t) 1/20.94581 (Ca) t/e, 0.106851 - sinC°S~t ot (Ca)X/2 . . . .  (39) 

4. Horizontal roller 

The configuration is sketched in Figure 2. This problem differs somewhat from the plane 
case because of the appearance of a natural length scale, namely the radius of the cylinder 
R, and because the film does not approach a constant thickness above the overlap region. 
However, it is easy enough to obtain an equation equivalent to (13) and this is 

eh 3 ~ ~ +  = 3 ( h _ H ) + s i n O H a _ s i n O h 3  + d . d h  3 R os0h ~ - ~ s i n 0 h  (40) 

Here we have a natural small parameter e given by 

,,/d D2 d 
e pgRS Ra . (41) 
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J 

Figure 2. The horizontal roller in general position. The flow near A is analysed in the text. The flow near 
B is considerably more complicated. 

One or two other remarks are in order here. We have put the flux Q in terms of the angle/3 
by means of the expression 

l o e  
Q = - U H +  : - r O H 3  sin/3. ~42) 

3 ta 

Then if/3 is the value of 0 at which the free surface joins the cylinder we have h = H at 
0 =/3, neglecting the small terms in e and d / R  in (40), and so H is the (unknown) f'tlm thickness 

at the upper limit of the overlap region. 
Also, the curvature K has been approximated on the assumption that h < R ,  and we know 

from the previous section that this must fail as the meniscus is approached. There is, however, 
nothing to be gained by retaining the accurate expression for K in polar coordinates, which is 
rather complicated, because these are not natural coordinates in the meniscus region. We shall 
return to this point later on. 

In the overlap region we introduce scaled variables corresponding to (19): 

h = 6q), H = 6J, 0 = /3+el/36/j (43) 

and then (40) becomes 

¢3(¢,,, + 82eZ,3~,) = 3 ( ~ - - J )  + 62 {sin 13J 3 -- sin (~ + el/36e)¢ 3 } 
(44) 

{ 1/3 3 , 3 6  ,/3 4} , - 6  4 c o s f ~ + 6 e  ~)~b ~ --~- e s in(~+6el /3~)~  

where we have used the result d / R e  1/3 = 82 . 
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It is easy to see that the inner expansion (21) proceeds exactly as in the plane case, for the 

first two terms, with (of course) ~ = 0 r / 2 ) -  t~. When we introduce the scalings appropriate 
to the meniscus region, namely (26), it will be necessary, if the theory is to go through 

unchanged, that the argument of the sin and cos terms in (44), that is, # + eI/36~, does not 
change by order one. For this it is necessary that 

el/3 /6 = D/R ,~ 1 (45) 

and this is an extra assumption of the theory. This may be thought of as expressing the con- 

dition that the slope of  the cylinder surface must not change significantly in the overlap region. 
Note that the appropriate independent variable in the meniscus region is not 62 ~, which would 
be a magnified polar angle, but a Cartesian coordinate in the direction of the local tangent. 

The formula for the derivative of the curvature on the left of (44) has been obtained by 
suppressing a number of small terms, and it is necessary to check that none of these enter as 
far as order 62 - that is, in the 2.term inner expansion. This is straightforward but lengthy, 

and we shall not give the details here. 
Now using the results of the previous section we find that at 0 =/~, 

h = H =  8 J o + 6 3 J l  . . .  (46) 

from (40), since the terms in e and d[R are negligible. Then the thickness at the top, which 
is what is usually measured, is given by 

h (o) = / ~ -  L sin ~z~ ~, 
3 

or, in dimensional form, correct to O(8 B) 

t+l"  / / / 7 ( 0 )  = 1 (.I~ - ~ ,Io ~)cos a ~ 3 
\ P g /  (l_sinot)l/2 Jo6 4 ( - ] - - ~  . . .  

1 /o + / 
~-~g] (1 -- sin a) 1/2 .94581 (1 -- sin a) 

(47) 

5. Concluding remarks 

Experimental work on the vertical drag-out of plates has been reported by White and Tallmadge 
[5] and Spiers et al. [6], and it is clear from these results that the Landau-Levich result is an 
overestimate of the film thickness. On the other hand the agreement is remarkably good con- 
sidering that it is (Ca) 1/6 that is supposed to be small; the discrepancy is not serious below 
Ca "" 10 -2. This may have helped to conceal from these authors (and others) the fact that 
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the Landau-Levich result is really only asymptotically correct as Ca ~ O. In both papers just 

cited a comparison is made including points in the range 1 < Ca < 10. 
The correction in (39) is negative and this will tend to bring theory and experiment closer. 

How much closer is difficult to assess directly, since the raw experimental data are not avail- 

able, the results being given on small scale graphs with one logarithmic axis. However White 

and Tallmadge give a 'corrected' formula which, although without any proper rational basis, has 
the same form as (39) but with a numerical coefficient 0 . 2 8 0 . . .  instead of 0.10685. Their 

result gives a slight underestimate compared with the experimental points and so the present 

result is in marginally better (i.e. very good) agreement. Spiers et al. [6] solve their equation 
numerically and give a table comparing their results with the formula of White and TaUmadge 

[5]. The difference between the two is only a few per cent up to about Ca = 0.1, beyond which 
all the theories are meaningless anyway. We can conclude from this that the present result 
is in good agreement with experiment - that is, better than the Landau-Levich theory - in 
the appropriate range, but is not significantly better than the two earlier theories. It has the 
merit, which they do not have, of being the result of  a correct treatment of the equations. 

Data for the roller-coating problem have been presented by Middleman [1] and 
Tharmalingam and Wilkinson [2, 3]. Middleman's results show a downward trend in the film 
thickness as Ca increases which is in flat contradiction to all other reported results. The present 
author has been assured by Professor Middleman that his results have been correctly reported 
(that is, there is no error in the caption or anything of that kind) and at present there appears 
to be no explanation of the disagreement. The experimental results of Tharmalingam and 
Wilkinson show considerably more scatter than the flat plate results cited earlier. The present 

result, embodied in equation (47), falls between the curves marked 'Present Theory' and 
'Theory 2' of reference [2], Figures 6 and 7, and gives good agreement with the experimental 
points. (N.B. The captions of these two figures are reversed.) There is similar agreement with 
the experimental data displayed in [3]. 

It may be appropriate to give a brief discussion of the non-uniformity in (39) as 
approaches Ir/2. This would be relevant to the coating of a deeply submerged roller. The results 
given are of course asymptotically valid as Ca ~ 0 with a fixed. 

The non-uniformity arises when the second term of (39) is comparable with the first, that 

is, when 0r/2) -- a is of order ~2, so we begin by introducing a scaled angle S given by 

= 2 - - 8 : S .  (48) 

The outer solution (35) now takes the form 

1 
~b . - , -~82SX  2 + . . .  

and by comparing this with the solution of (13) at large x we can see that the appropriate 
scalings for (13) must be 

h = ¢/8 ,  x = ~/6, H = J / f ,  (49) 
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and these replace (19). Thus, the film thickness is larger by a factor 1162 than when 0r/2) -- ~ is 

order one, and moreover the scale for ~ turns out to be D, so that in fact ~ is identical with 
X. This means that the distinction between the inner and outer regions has disappeared, and a 
single equation describes the whole film, namely 

~3~,,, = 3 ( O _ j ) _ S ( O a  _ j a ) +  OaO,. (50) 

A curious difficulty arises when we consider the boundary conditions. We need four to 
specify the solution and to fix J, which is unknown. As ~ -* + oo we obtain from (50) the 

asymptotic solution 

- s t  + A + B exp (t) + C exp ( -  t) .  (51) 

We must have B = 0 and we can set A = 0 arbitrarily (by choosing the origin of t). The term 
St embodies the requirement that the free surface become horizontal. 

As t-~ - o o  we must have O ~ J ,  so putting O = J +  ~ and linearising we f'md ~k is pro. 

portional to exp (at),  where ot is any root of the cubic 

3 
o~ 3 - - o l - - f S - ( 1 - - S J  2) = O. (52) 

Those roots with negative real part must be excluded, so if there are two such roots the 
necessary four conditions will be forthcoming. Now it turns out that (52) always has one 
negative (real) root but only has two if SJ 2 < 1. Since J is unknown there is no guarantee of 
a unique solution. This is unwelcome, but there is no very obvious reason why the real, physical 

problem should have a unique solution; the film thickness might approach different steady 
values depending on the initial conditions. 

A good deal of numerical work has been carried out and the results may be summarised 
as follows. As remarked above, there is (at most) one solution with SJ z < 1. This solution 

was located, and J calculated as a function of S but appears to exist only for S >  1.18 
approximately, at which point SJ 2 was equal to 1. The region SJ 2 > 1 was explored. Here, 

there is a free parameter in the solution at -- 0% and it appeared to be possible to achieve any 

value of J (for each S) by suitable choice of this parameter. For complex ~ the solutions oscil- 
late violently before approaching the asymptote at + o., and it became very difficult to tell 
whether a given integration was behaving properly or not. The computations were abandoned 
on the grounds of expense. 

The well-behaved solutions with SJ  2 < 1 are the continuation of the asymptotic solutions 
described earlier, and one might speculate that they are not unique either. If not, the other 
solutions would have much larger values of the film thickness and would have a wavy character. 
Such flows do not seem to have been observed and might be unstable in some way. 

Acknowledgements 

The author is grateful to Dr. A. F. Jones for several useful discussions during the preparation 
of this paper. The numerical work was kindly carried out by Dr. I. Gladwell. 



221 

References 

[1] S. Middleman, Free coating of viscous and viscoelastic liquids onto a partially submerged rotating 
roll,PolymerEng. Sci. 18 (1978) 734-737. 

[2] S. Tharmalingam and W. L. Wilkinson, The coating of Newtonian liquids onto a roll rotating at low 
speeds, Polymer Eng. Sci. 18 (1978) 1155-1159. 

[3] S. Tharmalingam and W. L. Wilkinson, The coating of Newtonian liquids onto a rotating roll, Chem. 
Eng. Sci. 33 (1978) 1481-1487. 

[4] L. Landau and B. Levich, Dragging of a liquid by a moving plate, Acta Physicochim. URSS. 17 (1942) 
42-54.  

[5] D. A. White and J. A. Tallmadge, Theory of drag out of liquids on flat plates, Chem. Eng. Sci. 20 
(1965) 33-37.  

[6] R.P.  Spiers, C. V. Subbaraman and W. L. Wilkinson, Free coating o fa  Newtonian liquid onto a vertical 
surface, Chem. Eng. Sci. 29 (1974) 389-396. 


